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We consider the phenomenon of vibration transfer of a physical quantity described by a scalar parameter 

and obeying the law of conservation in a two-component interacting medium. Expressions for the vibration- 

transfer coefficient are obtained for various cases of practical interest. A phantom model of  vibration transfer 
is suggested. The results of a numerical experiment are discussed. 

It is well known that vibrational motion of the components in multicomponent interacting systems gives rise 

to new phenomena of transfer [1 ]. However, the basic laws governing these phenomena have been studied 
insufficiently well. This hinders the practical application of the phenomenon of vibration transfer in engineering 
devices, for example, in thermal elements with controlled thermal conductivity. Moreover, the development of the 

theory of this process is of general scientific importance for deriving turbulence models [2 ]. 
In the present paper we develop a model for vibration transfer of scalar physical characteristics for which 

conservation laws are satisfied. In this case, diffusion-type processes are ignored and only the convective component 
of transfer is taken into consideration. 

The investigations are based on the conservation laws that in the form of a continuity equation are used 
for describing interacting physical systems. Generally, the interaction of systems is expressed by nonlinear 

relations. In the particular case when there are small deviations of local parameters from equilibrium values, 
Newton's linear law is used. For simplicity we assume the presence of two interacting components moving according 
to prescribed laws that correspond to the autonomy conditions. In addition, we consider the evolution of the scalar 

local s and integral S parameters (mass, charge, etc.). 
The evolution of the local parameter s in a two-component medium is described by the equations: 

OS 1 OS 1 
o--/- + v l  (t) --fix + a l  (sl  - s2) = o ,  (1) 

Os 2 Os 2 
O---t- + U2 (t) ~ + tX 2 (S2 -- Sl) = O,  (2) 

where Ul (t) is the velocity of the i-th component (i = 1, 2), ai(> 0) is the coefficient of the interaction of systems. 
We note that system (1)-(2) admits an exact solution in the case of constant gradients 

Os I Os 2 . . . .  r .  (3) 
Ox Ox 

Under the conditions of the equality of sl and s 2 at the initial time instant the solution takes on the form: 

t t 
S 1 = - -  F X  + F f u 1 (T) dr + a lF  f dr f V (t') exp (a (t' - ~)1 dt ' ,  

0 0 0 

(4) 
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t t r 
$ 2 ---- -- l"X + l" f U 2 (r) d r  - a2  r f dr f U (t') exp (a  (t' - r))  dr', 

o o o 
(s) 

where U(t) = U2(t) - Ul(t); a = a l  + a2. 

In the case of harmonic oscillations Ul "= Aiog! cos wit  and U2 =" A2o92 cos (to2t + ~,) the expression for the 

local parameters  is as follows: 

s I = - F x + F A  l s i n c o l t + a l F l ;  

s 2 = - Fx + FA 2 [sin (to2t + ~o) - sin ~o ] - a2FI ; (6) 

A2o92a [s in  (o)2 t + ~o) sin ~o 
I =  2------~ [ 

a + o92 ~ ~ 

_ oJ 2 (1 - exp ( -  a t ) )  sin ~o] Alo91a 

a2 J a2 + COl 2 

+ 
cos (o92t + ~) exp ( -  at) Cos ~p 

1 - exPa ( -  at)] . 

t2 

"sin wl t  cos o91 t -- 1 

o91 a 

When the gradients of the local parameters  differ from constant ones, difficulties arise in obtaining analyt ical  

solutions. 

The  t ransfer  of the integral parameter  S, corresponding to the local parameter  s, occurs along the x axis. 

This  t ransfer  is carried out due to a convective process. The  magnitude of the flux of the parameter  s 

j = 6sU,  (7) 

where ~ is a constant  coefficient, general ly contains oscillating components. The  mean value of the convective flow, 

without allowance for the interaction (al  = 0), for the period of vibrations 

O) = a (sth (8) 

is equal to zero in the case of harmonic oscillations. However, when a l  ;e 0 , an additional t ransfer  of the local 

parameter  s appears,  which is called vibration transfer.  

Now, we shall calculate the effective coefficient of vibration transfer.  For this purpose, we find the value 

of O: 

kl l kl t l O 
0 = -7- f (sl - s2) dx = --f f exp (a (r - t)) f -~x (V2s2 - VlS1) dxdr ,  (9) 

0 0 0 

where k 1 =/ca. In the case of constant  gradients 

t 
O = - klF f U ( r )  exp (ce (r - t)) d r .  (10) 

0 

The  magnitude of the flux of the parameter  s is equal to 

<{t )it )> j = - ( O x ) = k l F  f e x p ( a ( r -  t ) ) U ( r ) d r  f U ( r )  dr  . 
0 0 

The  effective vibrat ion- t ransfer  coefficient is determined by averaging the flux [3 ] 

<( )(! )) x =  - k  1 f e x p ( a ( r -  t)) U ( r )  dr U ( Q d ~  . 
0 

(ll) 
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T h e  calculation of the integrals entering into Eq. (11) does not involve particular complexities in spite of 

cons id erab le  numerical effort. In the  case  of  harmonic oscillations the quantity O is r e p r e s e n t e d  as  ( for  large t) 

I AI A2 ] 
O = k l P  ~ sin (talt + ~Ol) ~ s in  (tO2/ + tp + ~02) , (12 )  

where O1 = a/tOl; 02  " a/to2; tan ~o I - a/ tol;  tan $o 2 - a/ to  2. The expression to be averaged seems to be very 
unwieldy. The result of averaging depends on the relationship between to I and co 2. 

At large differences between the frequencies (to 2 - col)/to I >> 1 or (co I - ~o2)/co2>> 1, we obtain 

klA ~ 1 kl A2 1 
x -  - -  + -  ( 1 3 )  

2 2" 
2 1 + O  l 2 1 + ~ 2  

When the frequencies w I = to 2 = w coincide, the result of averaging depends on the phase difference ~o: 

k I (A21 + A~) klAIA2 (14) 
K = - -  COS ,iO. 

2 (1 + �9 2) 1 + �9 2 

When ~o = 0, Eq. (14) yields 

K = kl (AI - A2)2 (15) 

2 (1 + �9 2) 

At equal amplitudes A 1 = A 2 = A 

K - - -  
kl A2 

1 + �9 2 (1 - cos ~o). (16) 

Thus,  the vibration-transfer coefficient r differs from zero, whereas regular convective heat  transfer along 

the x axis is absent. If the components oscillate in opposite phase ~o = ~, then the vibration-transfer coefficient is 

r. = 2klA2/(1 + O2), and according to Eq. (16) in the case of identical oscillation phases ~o = 0 vibration transfer 

is absent. Expressions (13)-(16) admit a simple physical interpretation. We note that the value of the vibration- 

transfer coefficient depends on the square of the amplitude of oscillations. At small frequencies co t -~ 0, co 2 --, 0 the 

vibration-transfer coefficient is represented by a linear combination of the squared frequencies: 

2 2  2 2  
klAlaJl klA2aJ2 (17) / c - - - + - -  

2a 2 2a 2 

At large values of frequencies, the vibration-transfer coefficient can reach a limiting value: 

kl (A 2 + A 2) (18) 
to- 2 

The phenomenon of vibration transfer can form a basis for creating new engineering devices (for example, 
thermal elements with controllable thermal conductivity) and explain previously discovered physical effects (for 

example, the increase in transfer coefficients in acoustic fields). We discussed the idea of using vibration transfer 
for supplying heat from the active zone of nuclear reactors without removal of a radioactive heat- t ransfer  agent. 

The investigation of system (1)-(2) is also of interest from another viewpoint. All the physical processes 

described by different terms in Eqs. (1) and (2) are reversible. At the same time, the process of vibration transfer 
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considered above does not change sign on replacement of Ul and /-/2 by - U t  and -U2. This means that the 
"irreversibility" degree of vibration transfer increases as compared to initial physical effects. It is extremely 

important to understand the reason for this phenomenon, since this will make it possible to suggest new approaches 

in the theory of a random behavior of the system. 

From Eqs. (1) and (2) we obtain two independent equations for defining sl and s2: 

o32Sl 02S1 02Sl OS ! Os 1 
Of 2 + (UI  + U2) ~Ox0t + UI U 2 - o x  2 + (ctl + ct2) Ot + ( a l U 2  + a 2 U l )  OX = 0 ,  (19) 

02s2 0252 02s2 Os 2 Os 2 
+ (U 1 + U2) ~ + ~ + (a 2 + a l )  + (a2V 1 + alU2) = 0.  

Ot 2 OxOt UI U 2 0 x  2 Ot Ox 
(2o) 

The type of the equations is determined by the sign of the discriminant 

O ---- (U  1 + U2) 2 -- 4f-/ iU 2 ---- (V 1 -- U2) 2 �9 (21) 

For harmonic oscillations Ul =" Altal cos (tolt + ~ol) and //2 - A2ca2 cos (to2t + la2) the discriminant is 

positive but at individual points it takes the value 0, so that system (1)-(2) is of the hyperbolic type with parabolic 

degeneration. The equation for characteristics 

2 

"-~ + ( V  1 + U 2 ) " ~  + V I v  2 = 0 

can be solved by either of two techniques: representation in the form of cofactors yields 

dx dx  (23) 
dt - - Ul (~) ' d---t = - U2 (~) ' 

and by completing the square, we obtain 

dx UI + U2 I U 1 _ U21 (24) 
dt 2 2 

We note that Eqs. (23) and (24) coincide when the difference U1 - U2 does not change sign. Otherwise, 

their integration leads to different results. Specifically, in the case of periodic functions, the solutions of Eqs. (23) 

are periodic, whereas the solutions of Eq. (24) are increasing functions x( t ) .  

Figure 1 gives the dependences of the characteristic velocities on time plotted according to Eq. (24) for 

various cases of harmonic oscillations. 
In case a, when one of the components is motionless (w2 = 0), the "exchange of characteristics" occurs at 

the points of the equality of characteristic velocities (23). The phenomenon of the "exchange of characteristics" 

leads to multiplication of the ways for evolution of the system. Although the number of families of characteristics 

in the system is equal to two, the number of the ways for the evolution of the system depends on the time 2 N = 

2 [2t/T], where N is the number of the points at which characteristic velocities intersect. The "multiplication" of the 

ways of evolution leads to a situation in which the description of the system becomes less definite with time. This 

corresponds to the "onset of chaos" in the system, so that the arrangements described by Eqs. (1) and (2) can be 

called in this sense linear "generators of chaos." The presence of an infinite denumerable set of the points of 

intersection of characteristic velocities is a condition for the onset of chaos. 
In other cases of the motion of components the "exchange of characteristics," i.e., the multiplication of the 

ways of evolution, seems to be more complex (see Fig. 1, cases b, c, d). 
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Fig. 1. The  dependence  of the characteristic veMcity on time: a) one of the 

components is at rest,  wl = 0; b) coincidence of frequencies, ~o = ~ / 2 ;  c) the 

same, ~o = ~; d) multiplicity of the frequencies is equal to two, COl ---- 20)2, ~O ffi 
0; 1) basic Nmilies of the characteristics; 2) upper "exchange" characteristic; 

3) lower "exchange" characteristic. 

We note that the characteristics obtained from Eq. (24) correspond to the motion of particles in a system 

of phantoms. The  mechanism of t ransfer  of the integral parameter  S can be described by means  of the motion of 
phantoms. 

Let us calculate the "energy" of a phantom. For this purpose we assume that w 2 = 0 and  co 1 = co, then  from 
Eq. (12) we obtain 

O = klF A sin ( w t  + ~ol ) .  (25) 

The  magnitude of the phantom "energy" is the amount  of the integral parameter  S, flowing for the time interval, 
equal to a half period, along the x-axis length, equal to the double amplitude: 

E s = 2 A  
~Pl + T / 2  t 4A2klF 4AXklF 

f O ( 0  dr  - 
~l [ ~ q a z + w 2 

w.  (26) 

In systems with rigid interaction a >> w the magnitude of the phantom "energy" is proportional to the 
frequency: 
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4A2kl F 4 A 2 k l  F (27) 
Es  = - - - - S " - -  o, = h ~  , h s = 

It is clear that the concept of phantoms is meaningful if the time intervals considered are larger than a half period 

A t  > T / 2 .  Therefore, the condition for phantom observation will be written down in the form 

T 4~klFA 2 (28) 
E s A t  > hsw 2 = hs~ - ct 

Relations (27) and (28) are analogs of the classical relations for photon energy and of the relation for the 
Heisenberg uncertainties. 

If the gradients of the local parameters differ from constant ones, then it is difficult to obtain analytical 

parameters. This leads to the problem of numerical simulation of a multicomponent system. This case, however, 
presents basic difficulties. The computational process is determined and unambiguous, and the behavior of the 

s y s t e m ,  e v e n  i n  a two-component case, is multivariant. Branching of the process a t  a macrolevel occurs ( i . e . ,  

b r a n c h i n g  of the values of the integral parameter in t i m e ) .  I n  s u c h  a c a s e  a numerical model gives only one of the 

variants of the system behavior, and it remains only to hope that all the cases of the behavior at different values 

of the parameters are invariant, i.e., they are similar in  a sense and reflect the general tendencies of system 

behavior. 

As a basis for numerical simulation, we take the relationships in a two-component case: 

s I (x, (k + 1) At) = s I ( x  - A t U  1 ( k A t ) ,  kAt) + Attx I (s2  (x ,  k A t )  - s I (X, (kAt)) ,  

s 2 (x, (k + 1) At) --- s 2 ( x  - A t U  2 (kAt), k A t )  + Ata 2 (s I (x ,  k A t )  - s 2 (x ,  (kAt)), 

using which from the values of s I and s2 at the instant k A t  we find the values of Sl and s2 at the time instant 
(k + 1)At. The relationship is easily generalized for the case of three, four, or more components. In the two- 

component case the correctness of the approximate equalities follows from the fact that if the functions Sl and s2 

satisfy the system 

S 1 (X, t + e l )  1 Sl (X --  U I ( t)  e l ,  t)  + 61a  I ( s  2 - S l )  + ~  ( e l ) ,  

s2 (x ,  t + e2) = s z ( x  - u z  (t)  e 2, t) + e2az  (s  I - s2) + o z  (e2) , 

then they also satisfy system (1)-(2). Actually 

Os 1 
- -  = lira 

Ot v.,O 

S 1 (X, t + t )  - -  S 1 (X, t) 

= lim 
e~0  

$1 (X --  8 U  1 ( / ) ,  t)  + 8ct I (S2 --  S l )  --  S I  (x ,  t) + o I (e)  

S I (X --  e a  I (1), t) - -  S 1 (x ,  t) 
= l i m  e + c q  (s 2 - s l )  = 

e--~0 

= lim 
e~0  

s 1 ( x - e U  1 ( t ) , t ) -  s I ( x , t )  

( -  u~ (t)) ( - -  O 1 ( t ) )  + a 1 (s2 - s1)  ~-- 

= lim 
s I ( x + A x ,  t ) -  s I (x,t)  

Ax ( - -  U 1 ( t ) )  + a I ( s  2 - S l )  = 
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Fig. 2. Space-time distribution of local parameters s] and $2 according to the 

results of computational experiment: a) for time t m 0, 3, 7.5 (curves 1, 2, 3); 

b) the same for large times (t = 23). 

Os 1 
= - Ox  U l  ( t )  + a 1 ( s  2 - s l ) .  

The substitution into the initial system yields an identity. 

Thus, we determine the values of sl and s2 at the time instants 0, At, 2At . . . . .  kAt, (k + 1)At. 

The choice of the branching variant depends on whether the value of kAt  occurred at a branching point or 
not, as well as on the value of the parameter s at this point. 

Figure 2 presents one of the variants of system evolution obtained from the results of calculations on an 
IBM computer. 

Thus, the evolution of two-component interacting systems under the conditions of vibrational motion of 

components leads inevitably to phenomena of vibration transfer of a scalar parameter. The front of perturbations 

moves with a finite velocity with "multiplication" of the ways of evolution, and this increases the uncertainty in 

describing system. One of the methods for describing the system evolution is the phantom one. Here the energy of 

a phantom in systems with rigid interaction is proportional to frequency. Many of the conclusions of the present 

work can be easily extended to the evolution of systems with a large number of components and with transfer of 
vector integral parameters. 

N O T A T I O N  

Si, Si, integral and local scalar parameters; t, time; x, spatial coordinate; Ui, velocity of i-th component; F, 

spatial gradient of scalar parameters; cti, interaction coefficient; Ai, toi, ~oi, amplitude, frequency, and initial phase 

of oscillations; ], flux of the scalar parameter; x, coefficient of vibration transfer; Es, energy of phantom; el, time 
step; oi(e) , infinitesimal; hs, constant. 

R E F E R E N C E S  

I .  

2. 

3. 

A. S. Buevich and A. I. Filippov, Inzh.-Fiz. Zh., 48, No. 2, 224-230 (1985). 

Ya. B. Zel'dovich, Dokl. Akad. Nauk SSSR, 266, No. 4,821-826 (1982). 

R. I. Nigmatullin, Fundamentals of the Mechanics of Heterogeneous Media [in Russian 1, Moscow (1978). 

486 


